What is "Solar Radiation"?

Solar radiation describes the visible and near-visible (ultraviolet and near-infrared) radiation emitted from the sun. The different regions are described by their wavelength range within the broad band range of 0.20 to 4.0 µm (microns). Terrestrial radiation is a term used to describe infrared radiation emitted from the atmosphere. The following is a list of the components of solar and terrestrial radiation and their approximate wavelength ranges:

  • Ultraviolet: 0.20 – 0.39 µm
     

  • Visible: 0.39 – 0.78 µm
     

  • Near-Infrared: 0.78 – 4.00 µm
     

  • Infrared: 4.00 – 100.00 µm

Approximately 99% of solar, or short-wave, radiation at the earth’s surface is contained in the region from 0.3 to 3.0 µm while most of terrestrial, or long-wave, radiation is contained in the region from 3.5 to 50 µm.

Outside the earth’s atmosphere, solar radiation has an intensity of approximately 1370 watts/meter2. This is the value at mean earth-sun distance at the top of the atmosphere and is referred to as the Solar Constant. On the surface of the earth on a clear day, at noon, the direct beam radiation will be approximately 1000 watts/meter2 for many locations.

The availability of energy is affected by location (including latitude and elevation), season, and time of day. All of which can be readily determined. However, the biggest factors affecting the available energy are cloud cover and other meteorological conditions which vary with location and time.

Historically, solar measurements have been taken with horizontal instruments over the complete day. In the Northern US, this results in early summer values 4-6 times greater than early winter values. In the South, differences would be 2-3 times greater. This is due, in part, to the weather and, to a larger degree, the sun angle and the length of daylight.

source EPLAB

Leave a Comment